상관계수 개념

두 양적(순서형 포함) 변수(X, Y)간의 직선 관계 정도를 계수로 측정함

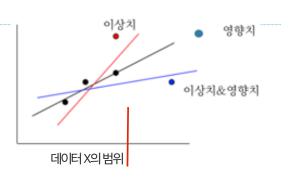
직선(함수)관계가 유의하다는(한 변수가 증가하면 다른 변수도 직선적으로 증가하거나 감소함) 것은 두 변수가 유사하다는 의미 - 변수의 유사성 척도

산점도 scatter plot

정의

2개의 측정형 변수 데이터를 2차원 공간에 표현하여 두 변수 의 함수 관계를 예상함

- X- 축 : 결정의 요인, 예측변수, 독립변수, 예측변수
- Y-축 : Output, 목표변수, 목표변수 <- 목표변수가 없는 경우 두 변수 간의 직선관계만 본다.



진단내용

- 두 변수 간의 함수 관계를 본다. -> 각 변수의 확률분포함수도 제공하는 그래픽 툴이 있다.
- 이상치와 영향치를 시각적으로 진단한다.

이상치 outlier

- 선형 함수 관계에서 적합 직선을 많이 벗어난 관측값 실제 오차의 분산 기준 $2^* \sigma$ 를 벗어남
- 예측변수 값은 관측 값의 범위 내에 있음

(진단) 오차의 추정치인 Studentized 잔차가 ± 2 벗어남 - 실증적법칙(좌우대칭인 분포의 정규분포 가정) (해결) 삭제 - 물론 잔차분석 후에 실기

영향치 influential

- 예측변수 값이 극단 값(다른 관측치와 떨어져 있고 두 변수의 함수 관계에 영향을 주는 관측값
- 순수 영향치 : 함수 회귀 추정 식 상에 있어 함수 관계(기울기 변동)에는 영향을 주지 않으나 결정계수 높여 예측변수의 설명 능력을 과다하게 높은 것으로 판단하게 하는 결과 왜곡

(진단) 잔차분석 - Hat 통계량 활용

(해결) 영향치 주변의 관측값을 추가 수집 후 분석, 영향치 값이 실제 발생 가능하지 않은 경우 제외

상관계수

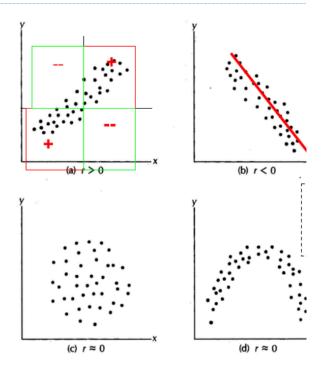
Karl Peason 공식

$$\boldsymbol{\cdot}^{\rho} = \frac{COV(X,Y)}{\sqrt{V(X)\sqrt{V(Y)}}}$$

• 데이터 계산식:

$$r = \frac{\sum_{i}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i}^{n} (x_{i} - \bar{x})^{2}} \sqrt{\sum_{i}^{n} (y_{i} - \bar{y})^{2}}}$$

• 분모는 확률변수의 표준편차이므로 상관계수의 부호를 결정하는 분자항(공변량) $\sum_{i}^{n} (x_i - \bar{x})(y_i - \bar{y})$ 의 부호이다



Spearman 순위 상관계수

. (방법 1) $r_s = Corr(R_{X_i}, R_{Y_i})$ where R_{X_i} 는 X_i 의 크기 순위이며, R_{Y_i} 는 Y_i 의 크기 순위이다.

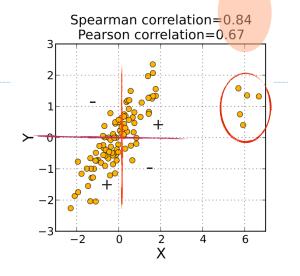
. (방법 2)
$$r_s = 1 - \frac{6\sum d_i^2}{n(n^2-1)}$$
, $d_i = R_{X_i} - R_{Y_i}$

• 대부분의 데이터 범위 밖에 있는 관측치(타원형 내 관측치)는 상관계수 값을 높이는 역할을 한다. 그러므로 상관계수를 계산하기 전에 반드시 산점도를 그려 데이터의 범위를 많이 벗어난 관측치가 있는지 확인하여 상관분석의 활용도를 높일 필요가 있음.

두 상관계수의 관계

이상치가 존재하는 경우 값의 크기에 의해 상관관계 척도를 계산하는 피어슨 상관계수 값이 작아진다.

그러므로 피어슨 상관관계를 활용하는 경우



Kendall au 상관계수

$$\tau = \frac{\#of_concordant_pairs - \#of_disconcordant_pairs}{n(n-1)/2}$$

- concordant = 만약 $(x_i > x_j)$, $(y_i > y_j)$ 이거나 $(x_i < x_j)$ 이면, $(y_i < y_j)$ 이면 두 관측치는 concordant 쌍이라 함
- τ 값이 클수록 데이터 순위의 일치도는 높아지므로 상관관계가 높아진다.

상관계수 유의성 검정

가설 $H_0: \rho = 0$

- 귀무가설 : 두 변수의 <u>직선</u> 상관관계는 유의하지 않다. <=> 서로 독립이다. $H_0:
 ho = 0$
- 대립가설 : 두 변수의 **직선** 상관관계는 유의하다. $H_0: \rho \neq 0$

데이터 검증

- 데이터는 이변량 정규분포에 근사해야 한다. 단 n>20 인 대표본에서는 문제 없음
- 산점도를 그려 데이터 범위(X-) 밖의 관측치 존재 여부를 체크한다. 존재한다면 제외하거나 활용 시 주의해야 한다.

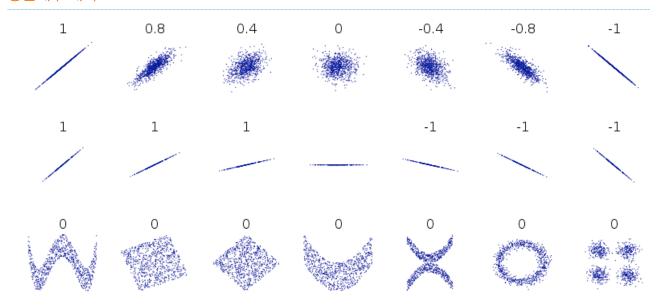
검정통계량

$$TS = \frac{r}{\sqrt{(1-r^2)(n-2)}} \sim t(n-2)^{-n= 표본크기, r= 상관계수}$$

결론

- $_{ullet}$ 유의확률 $P(t(n-2)>\left|TS\right|)$ 이 유의수준보다 작다면 귀무가설을 기각하여 상관관계의 유의하다고 결 론내리고 표본상관계수의 부호를 이용하여 해석
- 귀무가설이 기각, 표본상관계수 부호 + => 두 변수는 양의 상관관계가 있고 한 변수의 값이 증가(감소)하면 다 른 변수의 값도 증가(감소)한다.
- 귀무가설이 기각, 표본상관계수 부호 => 두 변수는 음의 상관관계가 있고 한 변수의 값이 증가(감소)하면 다 른 변수의 값도 감소(증가)한다.

상관계수 해석



- *) 출처 : 위키피디아
- -1과 1사이의 값이다.
- 1에 가까우면 양의 선형 상관 관계가 존재한다. 한 변수의 값이 증가(감소)하면 다른 변수 값도 증가(감소)한다.
- -1에 가까우면 음의 선형 상관 관계가 존재한다. 한 변수의 값이 증가(감소)하면 다른 변수 값은 감소(증가)한다.
- 두 변수의 상관 관계가 높다는 것은 두 변수가 동일한(comparable) 개념을 측정한다는 의미도 담고 있다(두 변수가 유사함). 그러므로 변수를 축약하거나 개체를 분류하는데 사용되는 다변량 분석에서는 공분산, 혹은 상관계수 개념 사용

Rule of thumb:

- 0.0 = |r|: no correlation
- 0.0 < |r| < 0.2: very weak correlation
- $0.2 \le |\mathbf{r}| < 0.4$: weak correlation
- $0.4 \le |\mathbf{r}| < 0.6$: moderately strong correlation
- $0.6 \le |\mathbf{r}| \le 0.8$: strong correlation
- $0.8 \le |\mathbf{r}| < 1.0$: very strong correlation
- 1.0 = |r| : perfect correlation

$H_0: \rho = \rho_0$ 검정

- 상관관계 유의성 검정이 아니라 임의의 상관계수와 동일한지 검정
- 활용 : 미국의 경우 부자 키의 상관계수는 0.65이다. 한국의 경우 미국과 부자의 키의 상관계수가 같다고 할 수 있나? 귀무가설 : H_0 : $\rho = 0.65$

• 검정통계량 :
$$TS = \frac{\frac{1}{2}\ln(\frac{1+r}{1-r}) - \frac{1}{2}\ln(\frac{1+\rho_0}{1-\rho_0})}{1/\sqrt{n-3}} \sim N(0,1)$$

서로 독립인 2집단 상관계수 차이 검정 $H_0: \rho_1=\rho_2$

- 귀무가설 $H_0: \rho_x = \rho_y$ vs. 대립가설 $H_0: \rho_x \neq \rho_y$
- 활용 : 한국 부자 키의 상관계수와 미국 부자 키의 상관계수는 동일한가?

$$z(x) = 0.5 \ln \frac{1+r_x}{1-r_x}, z(y) = 0.5 \ln \frac{1+r_y}{1-r_y}$$

$$z = \frac{z(x)-z(y)}{\sqrt{1/(n_x-3)+1/(n_y-3)}} \sim N(0,1)$$
 • 검정통계량 :

다변량 산점도 그리기

예제 데이터: IRIS 데이터 https://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv

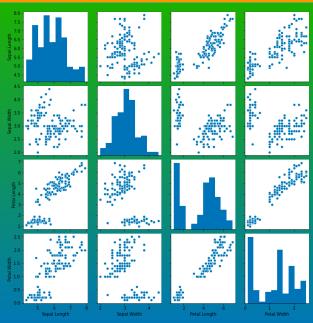
import pandas as pd
iris=pd.read_csv("https://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv") iris=iris.iloc[:,1:6] <u>iris.info</u>()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 150 entries, 0 to 149 Data columns (total 5 columns):

	, , , , , , , , , , , , , , , , , , , ,	, .	
#	Column	Non-Null Count	Dtype
0	Sepal.Length	150 non-null	float64
1	Sepal.Width	150 non-null	float64
2	Petal.Length	150 non-null	float64
3	Petal.Width	150 non-null	float64
4	Species	150 non-null	object 첫 열은 제외하였음

행렬 산점도

import seaborn as sns import matplotlib.pyplot as plt sns.pairplot(iris) plt.show()



sepal 꽃받침 길이는 꽃잎 petal 길이와 상관관계 가장 높고 꽃잎 넓이 꽃받침 넓이 순이다.

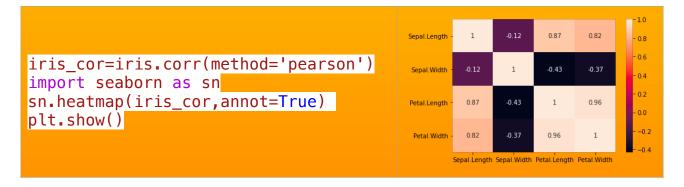
기초통계량 구하기

공분산 구하기

s	
	gth
Vidth	Vid
Petal.Length	Petal.Leng
Petal.Width	Petal.Wid

상관계수구하기

		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
iris.corr(method='pearson')		1.000000	-0.117570	0.871754	0.817941
	Sepal.Width	-0.117570	1.000000	-0.428440	-0.366126
[참고] spearman, kendall	Petal.Length	0.871754	-0.428440	1.000000	0.962865
	Petal.Width	0.817941	-0.366126	0.962865	1.000000



상관계수 유의성 검정

import scipy.stats as stats
stats.pearsonr(iris['Sepal.Length'],iris['Sepal.Width'])

 $\Gamma \rightarrow (-0.11756978413300206, 0.15189826071144766)$

다변량 상관분석

다변량 데이터 행렬 $X_{n \times p}$

$$X_{n imes p} = egin{bmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \dots & & & & \\ x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix}$$
 <- 표본크기 n, 확률변수 개수 p개

import numpy as np
df_array=np.array(iris.iloc[:,0:5])
df_array.shape

[→ (150, 4)

확률변수 열벡터 x_i

데이터 행렬의 하나의 열이 확률변수의 데이터이다.
$$\underline{x}_i = \begin{bmatrix} x_{1i} \\ x_{2i} \\ \dots \\ x_{ni} \end{bmatrix}$$
, 1벡터 : $\underline{1} = \begin{bmatrix} 1 \\ 1 \\ \dots \\ 1 \end{bmatrix}$

n=df_array.shape[0]
one=np.ones(n)
x=df_array[:,0]; x

C array([5.1, 4.9, 4.7, 4.6, 5., 5.4, 4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5. , 5.2, 5.2, 4.7, 4.8, 5.4, 5.1, 5.1, 5. , 4.5, 4.4, 5. , 5.1,

평균 및 분산

평균 :
$$\bar{x}_i = \sum_i^n x_i/n$$
 (행렬계산) $\bar{x}_i = \underline{1}^T \underline{x}_i/n$

m=one.dot(x)/n

[→ 5.8433333333333334

분산 :
$$V(x_i) = \frac{\sum_i^n (x_i - \bar{x}_i)^2}{n-1}$$
 : [중심화] $c_i = (x_i - \bar{x}), \underline{c}_i = \begin{bmatrix} x_{1i} - \bar{x}_i \\ x_{2i} - \bar{x}_i \\ \dots \\ x_{ni} - \bar{x}_i \end{bmatrix}$

(행렬계산)
$$V(x_i) = \underline{c}_i^T \underline{c}/(n-1)$$

c=x-np.full(n,m) v=c.T.dot(c)/(n-1) v**(0.5)

Г→ 0.828066127977863

평균벡터 구하기 $E(\underline{x})_{1 \times p} = \underline{1}^T X$

```
df_mean=np.dot(one,df_array)/n
df_mean

□ array([5.84333333, 3.05733333, 3.758 , 1.19933333])
```

공분산행렬 구하기

```
중심화 행렬 : C_{n \times p} = X_{n \times p} - \underline{1}_{n \times 1} E(X)
공분산행렬 : \Sigma_{p \times p} = (C^T C)/(n-1)
```

상관계수행렬 구하기

```
상관계수 : Corr(x_i,x_j)=\dfrac{COV(x_i,x_j)}{\sqrt{V(x_i)}\sqrt{V(x_j)}} 그러므로 R=D^{-1}\Sigma D^{-1}, 대각행렬 D는 공분산행렬의 대
```

각원소의 제곱근 값, 즉 각 확률변수 분산의 제곱근이므로 표준편차이다.