Chapter 5 다변량 확률분포함수

변수가 두 개 이상인 경우 이를 이변량, 다변량이라 한다.

- \bigcirc 은행 고객이 기다리는 시간(X)과 서비스 받는 시간 (Y)
- ○바이러스 감염된 환자 수(X)와 24시간 후 치료된 환자 수 (Y)
- \bigcirc 학생들의 키(X)와 몸무게(Y)
- \bigcirc 전광판에 사용된 n개 전구의 수명 $(X_1, X_2, ..., X_n)$

이산형과 연속형 변수가 함께 있는 이변량, 다변량 분포도 가능하나 매우 복잡하고 유용성이 낮으므로 모두 연속형이거나 이산형인 경우에 한정하여 여기서는 다루기로 한다.

확률표본으로부터 계산되는 통계량(statistic, 예, 평균, 분산)은 $(X_1, X_2, ..., X_n)$ 의 함수이며 모집단의 모수를 추정(inference, 추정과 검정)하는데 사용된다. 그러므로 통계량의 확률밀 도함수는 다변량 변수의 확률밀도함수이다. 우선 설명과 이해의 편의를 위하여 이변량 변 수인 경우 확률밀도함수를 먼저 설명하기로 하자..

5.1 결합확률밀도함수(Joint PDF)

주사위를 동시에 두 개 던지는 실험에서 한 주사위의 눈금을 확률변수 X_1 , 다른 주사위의 눈금을 X_2 라 정의하자. 이 확률실험에서 발생할 수 있는 경우의 수는 36가지이고 각각이 일어날 가능성(확률)이 동일하므로(equally likely) 확률변수 (X_1, X_2) 의 결합밀도함수는 다음과 같이 정의할 수 있다.

$$p(x_1, x_2) = P(X_1 = x_1, X_2 = x_2)1/36, x_1 = 1, 2, ..., 6; x_2 = 1, 2, ..., 6$$

정의 (joint probability distribution function) 결합확률밀도함수

$$f(x_1, x_2) = P(X_1 = x_1, X_2 = x_2)$$
(이 변량)
 $f(x_1, x_2, ..., x_n) = P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$ (다변량)

확률밀도함수이므로 다음이 성립한다.(다변량인 경우)

① $p(x_1, x_2, ..., x_n) \ge 0$ (이산형) $f(x_1, x_2, ..., x_n) \ge 0$ (연속형) for all $x_1, x_2, ..., x_n$

②
$$\sum_{x_1, \dots, x_n} P(x_1, x_2, \dots, x_n) = 1$$
 (이산형), $\int_{x_1, x_2, \dots, x_n} f(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n = 1$ (연속형)

은행에 창구가 3개 있다. 2명의 고객이 서로 다른 시간에 왔고 서로 독립(모르는 사람)이라고 하자. 확률변수 X_1 을 창구1에 온 고객 수, X_2 을 창구 2에 온 고객 수라 할 때 (X_1,X_2) 결합밀도함수를 구하시오.

x1 x2	0	1	2
0	1/9	2/9	1/9
1	2/9	2/9	0
2	1/9	0	0

정의 (joint distribution function) 결합분포함수

$$F(x_1, x_2) = P(X_1 \le x_1, X_2 \le x_2) = \int_{-\infty - \infty}^{x_1} \int_{-\infty}^{x_2} f(x_1, x_2) dx_2 dx_1$$

$$F(x_1, x_2, ..., x_n) = P(X_1 \le x_1, X_2 \le x_2, ..., X_n \le x_n)$$

사건의 확률에서 $P(A \cap B) = P(AB)$ 과 동일하다.

EXAMPLE 5.2

Example 5.1에서 F(-1,2), F(1.5,2), F(5,7)을 구하시오.

0 / 8/9 / 1

정리(THEOREM) 이변량 결합분포함수의 성질

①
$$F(-\infty, -\infty) = F(-\infty, y_2) = F(y_1, -\infty) = 0$$

② $F(\infty, \infty) = 1$

③비감소 함수(non-decreasing function)이다.

위의 정리의 증명은 obvious하다.

$$P(a < X \le b, c < Y \le d) = F(b, d) - F(b, c) - F(a, d) + F(a, c)$$
 (그래프로 보자)

확률변수 (X_1, X_2) 의 결합확률밀도함수(joint PDF)는 $f(x_1, x_2) = 1,0 \le x_1, x_2 \le 1$.

- (1) F(0.2,0.4) 을 구하시오.
- (2) $P(0.1 \le X_1 \le 0.3, 0 \le X_2 \le 5)$ 을 계산하시오.

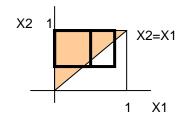
0.08 / 0.1

EXAMPLE 5.4

확률변수 (X_1, X_2) 의 결합확률밀도함수(joint PDF)는 $f(x_1, x_2) = k(1 - x_2), 0 \le x_1 \le x_2 \le 1$. (1)상수 k 구하시오.

(2) $P(X_1 \le 3/4, X_2 \ge 1/2)$ 을 계산하시오.

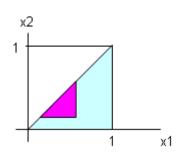
k = 6, 31/64



EXAMPLE 5.5

확률변수 X_1 은 주유소 저장 탱크에 있는 GAS 양(%)이고 X_2 는 하루에 팔린 GAS 양(%)이다. 결합밀도함수는 $f(x_1,x_2)=3x_1,0\le x_2\le x_1\le 1$ 라 할 때 기름 탱크에 저장된 GAS 양이 1/2보다 작고 하루 팔린 양이 1/4 이하일 확률을 계산하시오.

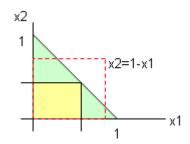
5/128



확률변수 (X_1,X_2) 의 결합밀도함수가 $f(x_1,x_2)=2,0\leq x_1\leq 1;0\leq x_2\leq 1;0\leq x_1+x_2\leq 1$ 이다.

- (1) $P(X_1 \le 1/2, X_2 \le 1/2)$ 을 계산하시오.
- (2) $P(X_1 \le 3/4, X_2 \le 3/4)$ 을 계산하시오.

1/2, 10/16



HOMEWORK #12-1

There are 9 executives in a company 4 are married, 3 are single, and 2 are divorced. Suppose that 3 executives are randomly selected. Let X_1 denote the number of married exec. and X_2 the number of never married. Find the joint pdf of (X_1, X_2)

HOMEWORK #12-2

Let X_1 denote the total time at a bank between arrival and departure and X_2 the time a customer waits in line before reaching the service desk. $f(x_1, x_2) = e^{-x_1}, 0 \le x_2 \le x_1$

- (1) Find $P(X_1 \le 2, X > 1)$.
- (2) Find $P(X_1 \ge 2X_2)$.
- (3) Find $P(X_1 X_2 \ge 1)$ (the spent time at the service window)

HOMEWORK #12-3

Let Y_1 and Y_2 denote the proportion of time during which employee I and II perform their assigned tasks, respectively. The joint pdf of (Y_1,Y_2) is $f(y_1,y_2)=y_1+y_2, 0 \le y_1 \le 1; 0 \le y_2 \le 1$

- (1) Find $P(Y_1 < 1/2, Y_2 > 1/4)$.
- (2) Find $P(Y_1 + Y_2 \le 1)$.

5.2 주변확률밀도함수 & 조건부 확률밀도함수 (Marginal and conditional pdf)

주변(Marginal)의 의미는 다른 확률변수의 모든 값에 대해 적분한다는 것이다.

정의

주변확률밀도함수:
$$P(x_1) = \sum_{x_2} P(x_1, x_2)$$
 (이산형) $f(x_1) = \int_{x_2} f(x_1, x_2) dx_2$ (연속형)

조건부확률밀도함수:
$$P(x_1 \mid x_2) = \frac{P(x_1, x_2)}{P(x_2)}$$
 , $f(x_1 \mid x_2) = \frac{f(x_1, x_2)}{f(x_2)}$ (참고: $P(A \mid B) = \frac{P(A, B)}{P(B)}$)

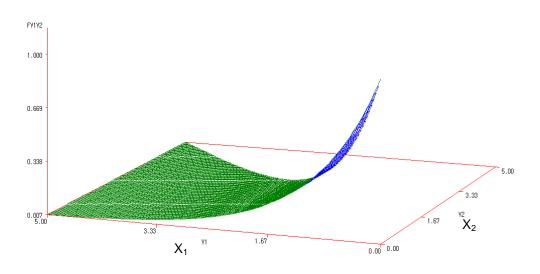
다변량 확률분포에도 동일한 정의가 성립된다.

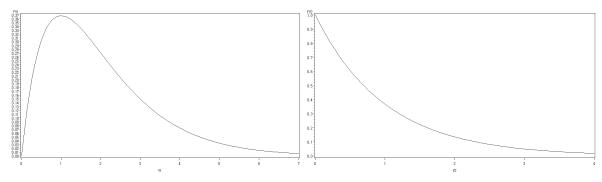
$$P(x_1) = \sum_{x_2} ... \sum_{x_n} P(x_1, x_2, ..., x_n)$$
 (이산형)

$$f(x_1) = \int ... \int f(x_1, x_2, ..., x_n) dx_2 dx_3 ... dx_n$$
 (연속형) 기호: $f_{x_1}(x_1) = f_1(x_1) = f(x_1)$

EXAMPLE 5.7

결합밀도함수 $f(x_1,x_2)=e^{-x_1},0\le x_2\le x_1<\infty$ 와 그의 주변 pdf을 그리시오.





Example 5.1에서 (이산형)

① X_2 의 주변확률밀도함수? ②조건부 확률밀도함수? $P(x_1 \mid X_2 = 1)$

x1 x2	0	1	2
0	1/9	2/9	1/9
1	2/9	2/9	0
2	1/9	0	0

EXAMPLE 5.9

Example 5.4, $f(x_1, x_2) = 3x_1, 0 \le x_2 \le x_1 \le 1$ (연속형)

- ① X_1 과 X_2 의 주변확률밀도함수를 구하시오.
- $② X_2$ 가 주어졌을 때 X_1 의 조건부확률밀도함수 $f(x_1|x_2)$ 구하시오.

조건부 분포함수 (conditional density function)

 $X_2 = x_2$ 가 주어졌을 때 확률변수 X_1 의 분포함수는 $F(x_1|x_2) = P(X_1 \le x_1|X_2 = x_2)$ 이다. 조건부 분포함수는 우선 조건부 확률밀도함수 $f(x_1|x_2)$ 을 구한 후 분포함수를 구한다.

EXAMPLE 5.10

결합확률밀도함수가 $f(x_1,x_2)=1/2,0 \le x_1 \le x_2;0 \le x_2 \le 2$ 일 때 $P(X_1 \le 1/2 \mid X_2 = 2)$?

 $f(x_2) = x_2/2$, 1/4

결합확률밀도함수가 $f(x_1,x_2)=2,0\leq x_1+x_2\leq 1;0\leq x_1,x_2\leq 1$ 일 때 $P(X_1\geq 1/2\mid X_2\leq 1/4)$?

HOMEWORK #12-4

The joint pdf of (X_1, X_2) is $f(x_1, x_2) = x_1 + x_2, 0 \le x_1 \le 1; 0 \le x_1 \le 1$.

- (1) Find the marginal pdf of X_1 and X_2 .
- (2) Find $P(X_1 \ge 1/2 | X_2 \ge 1/2)$.
- (3) Find $P(X_1 \ge 3/4 | X_2 = 1/2)$

HOMEWORK #12-5

The joint pdf of X_1, X_2 is $f(x_1, x_2) = 6(1 - x_2), 0 \le x_1 \le x_2 \le 1$.

- (1) Find the marginal pdf of X_1 .
- (2) Find the conditional pdf, $f(x_2 | x_1)$.
- (3) Find $P(X_2 \le 1/2 \mid X_1 \le 3/4)$.
- (4) Find $P(X_2 > 3/4 | X_1 = 1/2)$.

HOMEWORK #12-6

The joint pdf of
$$X_1, X_2$$
 is $p(x_1, x_2) = \frac{\binom{4}{x_1}\binom{3}{x_2}\binom{2}{3 - x_1 - x_2}}{\binom{9}{3}}, 0 \le x_1, x_2 \le 3, 1 \le x_1 + x_2 \le 3$

- (1) Find the marginal pdf of X_1 . Is it a popular distribution?
- (2) Find $P(X_2 = 1 | X_1 = 2)$.

5.3 Independence (독립)

확률 이론에서 두 사건이 독립이라면 P(AB) = P(A)P(B).

정의 (independence)

만약 $f(x_1,x_2)=f_1(x_1)f_2(x_2)$ (혹은 $F(x_1,x_2)=F_1(x_1)F_2(x_2)$)이라면 확률변수 X_1 와 X_2 는 서로 독립이다. 확률변수 X_1 와 X_2 는 서로 독립이라면 $f(x_1,x_2)=f_1(x_1)f_2(x_2)$ 이성립한다. X_1,X_2 서로독립 \Leftrightarrow $(iif) f(x_1,x_2)=f_1(x_1)f_2(x_2)$

확률표본 (Random Sample)

$$X_1, X_2, ..., X_n$$
 확률표본 \Leftrightarrow (iif) X_i iid $f(x)$

IID: Independently(독립) and Identically distributed(동일한 분포)

 $f(x_1, x_1, ..., x_n) = (idependently) f(x_1) f(x_2) ... f(x_n) = (identically) [f(x)]^n$

EXAMPLE 5.12

Example 5.1, 확률변수 X_1, X_2 는 서로 독립인가?

No

EXAMPLE 5.13

결합밀도함수 $f(x_1,x_2)=6x_1x_2,0\leq x_1,x_2\leq 1$ 일 경우 확률변수 X_1,X_2 는 서로 독립인가?

Yes

EXAMPLE 5.14

결합밀도함수 $f(x_1, x_2) = 2,0 \le x_2 \le x_1 \le 1$ 일 경우 확률변수 X_1, X_2 는 서로 독립인가?

No

정리(Theorem)

확률변수 X_1, X_2 의 범위(range)가 서로 종속되지 않고 결합확률밀도함수를 두 변수의함수의 곱으로, 즉 $f(x_1, x_2) = g(x_1)h(x_2)$, 표시할 수 있다면 두 확률밀도함수는 서로 독립이다.. 그 역도 성립한다.

EXAMPLE 5.15

결합확률밀도함수 $f(y_1, y_2) = 2y_1, 0 \le y_1, y_2 \le 1$ 일 경우 확률변수 X_1, X_2 는 서로 독립인가?

Yes

HOMEWORK #13-1

The length of life X for a bulb is distributed as $f(x) = \frac{1}{3}e^{-x/3}$, 0 < x. Randomly selected two bulbs have independently length of X_1, X_2 . Find $P(X_1 + X_2 \le 1)$.

HOMEWORK #13-2

Two telephone calls come into a switchboard at random times in a fixed 1-hour period. Assume that the calls are made independently of one another.

- (1) What is the probability that both calls are made in the first half hour?
- (2) What is the probability that the calls are made within 5 minutes of each other?

5.4 기대값(Expected value)

정의

$$\begin{split} E(g(X_1,X_2)) &= \sum_{x_1} \sum_{x_2} g(x_1,x_2) p(x_1,x_2) (\text{이산형}) \\ E(g(X_1,X_2)) &= \int_{x_1x_2} \int_{x_1x_2} g(x_1,x_2) f(x_1,x_2) dx_2 dx_1 (종속형) \end{split} \tag{이변량}$$

$$E(g(X_1,X_2,...,X_n)) = \sum_{\substack{x_1 \ x_n}} g(x_1,x_2,...,x_n) p(x_1,x_2,...,x_n) (\circ] \text{산형})$$
 (다변량)
$$E(g(X_1,X_2,...,X_n)) = \int_{\substack{x_1 \ x_n}} g(x_1,x_2,...,x_n) p(x_1,x_2,...,x_n) dx_n dx_{n-1}...dx_1 (연속형)$$

다변량 확률밀도함수에서 $E(X_k)$ 을 구하려면 우선 X_k 에 대한 주변확률밀도함수를 구하고 기대값을 구하면 된다.

EXAMPLE 5.16

결합밀도함수 $f(x_1,x_2)=2x_1,0\leq x_1,x_2\leq 1$ 일 경우 $E(X_1X_2),\ E(X_1),\ V(X_1)$ 을 구하시오.

1/3, 2/3, 1/18

EXAMPLE 5.17

결합밀도함수 $f(x_1, x_2) = 2(1-x_1), 0 \le x_1, x_2 \le 1$ 일 경우 $E(X_1 X_2)$ 을 구하시오.

1/6

정리(THEOREM)

(1)상수 c 에 대해 $E(cg(X_1, X_2, ..., X_n)) = cE(g(X_1, X_2, ..., X_n))$.

$$(2) \underbrace{E(g_1(X_1, X_2, ..., X_n) + g_2(X_1, X_2, ..., X_n) + ... + g_k(X_1, X_2, ..., X_n))}_{= E(g_1(X_1, X_2, ..., X_n)) + E(g_2(X_1, X_2, ..., X_n)) + ... + E(g_k(X_1, X_2, ..., X_n))$$

(예)
$$E(X_1X_2 + X_1^2) = E(X_1X_2) + E(X_1^2)$$

(3)만약 X_1, X_2 가 독립이라면 $E(X_1 X_2) = E(X_1) E(X_2)$ 이 성립한다.

 $E(g(X_1)h(X_2)) = E(g(X_1))E(h(X_2))$ (함수의 곱의 경우에도 성립한다)

EXAMPLE 5.18

결합확률밀도함수 $f(x_1,x_2)=3x_1,0\leq x_2\leq x_1\leq 1$ 일 경우 $E(X_1-X_2)$ 을 구하시오.

3/4, 3/8, 3/8

EXAMPLE 5.19

결합확률밀도함수 $f(x_1,x_2)=6(1-x_2),0\leq x_1\leq x_2\leq 1$ 일 경우 $E(X_1),E(X_2),\ E(X_1-3X_2)$ 구하시오

1/4, 1/2. -5/4

$$f_1(x_1) = 3 - 6x_1 + 3x_1^2, 0 \le x_1 \le 1$$

 $f_2(x_2) = 6x_2(1 - x_2), 0 \le x_2 \le 1$

HOMEWORK #13-3

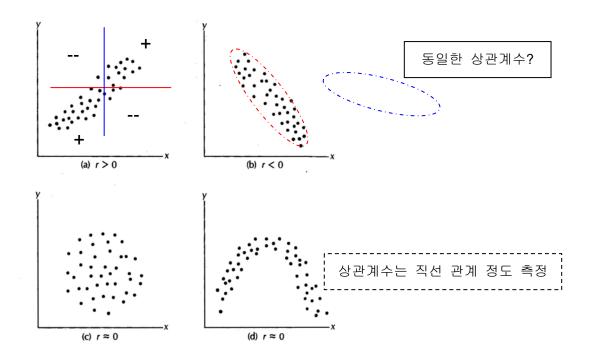
Let $f(y_1, y_2) = y_1 + y_2, 0 \le y_1, y_2 \le 1$. Find $E(30Y_1 + 25Y_2)$.

HOMEWORK #13-4

Let
$$f(x_1, x_2) = 1/x_1, 0 \le x_2 \le x_1 \le 1$$
. Find $E(X_1 - X_2)$. TIP $\int \frac{1}{x} dx = \ln x$

5.5 공분산(Covariance)과 상관계수(correlation)

두 변수간의 직선(선형) 관계 정도를 측정하는 기대값을 공분산이라 한다. 공분산은 확률변수 값의 크기(단위)에 의존하므로 변수의 표준화와 동일한 개념으로 표준편차로 나누어준 값을 상관계수라 한다. 상관계수는 -1과 1 사이의 값이다. 즉 $-1 \le \rho \le 1$ 이다. 표본데이터의 상관계수는 r로 표현한다. $\rho = 0$ 이면 상관 관계가 전혀 존재하지 않는다. $\rho = 1$ 은 완벽한 양의 상관관계(한 변수의 값이 커지면 다른 변수 값이 커진다), $\rho = -1$ 은 완벽한 음의 상관관계가 있다고 한다.



정리(THEOREM)

$$COV(X_1, X_2) = E(X_1 - E(X_1))(X_2 - E(X_2)) = E(X_1X_2) - E(X_1)E(X_2)$$

Proof 기대값은 확률변수가 아니라 상수임을 이용한다.

$$\begin{split} E(X_1 - E(X_1))(X_2 - E(X_2)) &= E[X_1 X_2 - X_1 E(X_2) - E(X_1) X_2 + E(X_1) E(X_2)] \\ &= E(X_1 X_2) - E(X_1) E(X_2) (\because E(X_1 E(X_2)) = E(X_2) E(X_1)) \end{split}$$

EXAMPLE 5.20

결합밀도함수 $f(x_1,x_2)=3x_1,0 \le x_2 \le x_1 \le 1$ 일 경우 공분산 $COV(X_1X_2)$ 을 구하시오.

3/4, 3/8, 3/10, **0.02**

EXAMPLE 5.21

결합밀도함수 $f(x_1,x_2)=2x_1,0\leq x_1,x_2\leq 1$ 일 경우 공분산 $COV(X_1X_2)$ 을 구하시오.

0

정리(THEOREM)

만약 X_1X_2 가 서로 독립이면 공분산이 **0**이다. X_1, X_2 서로독립 $\Rightarrow COV(X_1, X_2) = 0$ 위 정리의 역은 성립하지 않는다. 즉 공분산이 **0**이라도 독립이 아닐 수 있다.

EXAMPLE 5.22

X2 X1	-1	0	1
-1	1/16	3/16	1/16
0	3/16	0	3/16
1	1/16	3/16	1/16

Prof. Sehyug Kwon, Dept. of Statistics, HANNAM University http://wolfpack.hannam.ac.kr @2010 Fall

HOMEWORK #14-1

Let $f(x_1, x_2) = 6(1 - x_1), 0 \le x_1 \le x_2 \le 1$. Find $COV(Y_1, Y_2)$.

HOMEWORK #14-2

Let the discrete random variable. Y_1, Y_2 have the joint pdf $p(y_1, y_2) = 1/3$ for $(y_1, y_2) = (-1,0), (0,1), (1,0)$.

Find $COV(y_1, y_2)$. Are Y_1, Y_2 independent?

5.7 선형 함수의 기대값 (expected value of linear functions of random variables)

정리(THEOREM)

$$Y_1,Y_2,...Y_n \sim (\mu_i,?), X_1,X_2,...X_m \sim (\xi_j,?)$$
라 하고 $U = \sum\limits_{i=1}^n a_i, X_j = \sum\limits_{i=1}^n b_j Y_j$ 라 놓자.

$$(1)E(U) = \sum_{i=1}^{n} a_i E(X_i) = \sum_{i=1}^{n} a_i \mu_i$$

$$(2)V(U) = \sum_{i=1}^{n} a_i^2 V(Y_i) + 2\sum_{i < j} a_i a_j Cov(Y_i, Y_j)$$

$$(3)Cov(U,V) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j Cov(Y_i, X_j)$$

(이변량) $V(X_1 \pm X_2) = V(X_1) + V(X_2) \pm 2COV(X_1, X_2)$

EXAMPLE 5.23

결합확률밀도함수 $f(y_1,y_2)=3y_1,0\leq y_2\leq y_1\leq 1$ 일 경우 (X_1-X_2) 의 분산을 구하시오.

0.06

$$f(y_1) = 3y_1^2, 0 \le y_1 \le 1$$
, $f(y_2) = (3/2)(1 - y_2^2), 0 \le y_1 \le 1$

$$E(Y_1) = 3/4, E(Y_2) = 3/8 \; , \quad E(Y_1^2) = 3/5, E(Y_2^2) = 1/5 \; V(Y_1) = 0.04, V(Y_2) = 0.06, COV(Y_1, Y_2) = 0.02, COV(Y_1, Y_2$$

확률표본 $X_1,X_2,...,X_n$ 은 서로 독립이고 평균은 $E(Y_i)=\mu_i$, 분산은 $V(Y_i)=\sigma^2$ 을 갖는다. 표본 평균 $\overline{X}=\sum X_i/n$ 의 평균과 분산을 구하시오.

 μ , σ^2/n

EXAMPLE 5.25

확률변수 Y는 성공 확률이 p인 베르누이 시행을 n번 했을 때 성공의 회수이다. 표본

 $\sum\limits_{i=1}^{n}X_{i}$ 비율 $\hat{p}=\frac{i=1}{n}$, i-번째 실험의 $X_{i}=0$ (실패),1(성공)의 평균과 분산을 구하시오.

p, pq/n

EXAMPLE 5.26

결합밀도함수 $f(x_1,x_2)=4x_1x_2,0\leq x_1,x_2\leq 1$ 이다. $E(X_1-X_2),\ V(X_1-X_2)$ 을 구하시오.

0, 1/9

EXAMPLE 5.27

 $E(X_1) = 2, E(X_2) = -1, E(X_3) = 4, V(X_1) = 4, V(X_2) = 6, V(X_3) = 8$ $COV(X_1, X_2) = 1, COV(X_1, X_3) = -1.COV(X_2, X_3) = 0$

 $E(3X_1+4X_2-6X_3)$, $V(3X_1+4X_2-6X_3)$ 을 구하시오.

HOMEWORK #14-3

Let X_1, X_2 be uncorrelated random variable. Find the covariance and correlation of $W = X_1 + X_2, U = X_1 - X_2$ in terms of the variance and covariance of X_1, X_2 .

HOMEWORK #14-4

Let $f(y_1, y_2) = 2,0 \le y_1, y_2 \le 1;0 \le y_1 + y_1 \le 1$. Find $E(Y_1 + Y_2)$ and $V(Y_1 + Y_2)$.

HOMEWORK #14-5

Let $f(y_1, y_2) = (1/8)y_1e^{-(y_1+y_2)/2}$, $0 \le y_1, y_2$. Find E(C) and V(C) where $C = 50 + 2Y_1 + 4Y_2$.

5.8 조건부 기대치(Conditional Expectations)

정의(Definition)

$$\begin{split} E(g(X_1)|X_2 = & x_2) = \int g(x_1) f_{1|2}(x_1 \mid x_2) dx_1 (연속형) \\ &= \sum_{x_1} g(x_1) p_{1|2}(x_1 \mid x_2) (이산형) \end{split}$$

$$V(X_1 | X_2 = x_2) = E(X_1^2 | X_2 = x_2) - E(X_1 | X_2 = x_2)^2$$

정리(Theorem)

$$(1)E(X) = E[E(X | Y)]$$

$$(2)V(X) = E[V(X | Y)] + V[E(X | Y)]$$

Prove

$$E(Y_1) = \int y_1 f(y_1) dy_1 = \int y_1 \int f(y_1, y_2) dy_2 dy_1$$

=
$$\int \int y_1 f(y_1 | y_2) f(y_2) dy_1 dy_2$$

=
$$\int E(Y_1 | Y_2 = y_2) f(y_2) dy_2$$

V(X)에 대한 증명은 다음 사실을 이용하여 가능하다.

$$V(X \mid Y) = E(X^2 \mid Y) - E(X \mid Y)^2, \quad E(V(X \mid Y)) = E\{E(X^2 \mid Y)\} - E(E(X \mid Y)^2),$$

$$V(E(X|Y)) = E\{E(X|Y)^{2}\} - E(E(X|Y))^{2}$$
 (Q.E.D.)

결합확률밀도 $f(x_1, x_2) = 1/2, 0 \le x_1 \le x_2; 0 \le x_2 \le 2$. $E(Y_1 | Y_2 = 1.5)$.

0.75

$$f(y_1 \mid y_2) = \frac{1}{y_2}, 0 \le y_1 \le y_2 \le 2, \quad E(Y_1 \mid Y_2 = y_2) = \frac{y_2}{2}$$

EXAMPLE 5.28

확률변수 Y는 이항분포 Binomial(n=3,p) 따른다. 모집단 비율 p는 확률변수로 균일분 포 Uniform(0,1)을 따른다고 한다. E(Y), V(Y)을 구하시오.

TIP (1)E(X) = E[E(X | Y)](2)V(X) = E[V(X | Y)] + V[E(X | Y)]

1.5 / 1.25

HOMEWORK #15-1

확률변수 Y가 모수가 λ 인 포아송 분포를 따른다. $Y \sim Poisson(\lambda)$. 모수 λ 의 확률밀도함수는 $f(\lambda) = e^{-\lambda}, \lambda \ge 0$ 이다. Y의 기대치와 분산을 구하시오.

5.9 다항 분포 (Multinomial Probability Distribution)

다항 실험 Multinomial experiment

- ①실험은 n개의 <u>동일하고(identical)</u>, <u>독립(independent)인</u> 시행이다.
- ②각 시행의 결과는 k 개이고 각 결과의 성공 확률은 p_i 이다. $\sum\limits_{i}^{k}p_i=1$

③확률변수
$$X_1, X_2, ..., X_k$$
; X_i 는 결과 i 발생 수이다. $\sum_{i=1}^n X_i = n$.

확률변수 $X_1, X_2, ..., X_k$ 의 결합확률밀도함수는

$$p(x_1, x_2, ... x_n) = \binom{n}{x_1 x_2 ... x_n} p_1^{x_1} p_2^{x_2} ... p_k^{x_k}, \sum p_i = 1, \sum x_n = n$$

정리 (THEOREM)

$$(1)E(Y_i) = np_i, V(Y_i) = np_iq_i$$

$$(2)COV(Y_s, Y_t) = -np_sp_t, \text{ for } t \neq s$$

Proof

- $(1) X_i \sim Binomial(n, p_i)$ 는 쉽게 알 수 있다.
- (2)만약 i-번 시행에서 결과 s 가 일어나면 $U_i=1$, 그렇지 않으면 $U_i=0$ 이라 정의하고 $X_s=\sum\limits_{i=1}^n U_i$ 이라 하자. 그리고 j-번 시행에서 결과 t 가 일어나면 $W_j=1$, 그렇지 않으면 $W_j=0$ 이라 정의하고 $X_t=\sum\limits_{i=1}^n W_j$ 이라 하자.

$$\begin{split} COV(Y_{S}, Y_{t}) &= \sum_{i=1}^{n} \sum_{j=1}^{n} COV(U_{i}, W_{j}) \\ &= \sum_{i=1}^{n} COV(U_{i}, W_{i}) + \sum_{i \neq j} \sum_{j=1}^{n} COV(U_{i}, W_{j}) \end{split} \tag{Q.E.D.}$$

$$=-np_{s}p_{t}why?COV(U_{i},W_{i})=E(U_{i}W_{i})-E(U_{i})E(W_{i})=0-p_{s}p_{t}$$

HOMEWORK #15-2

$$\text{Let} \quad p(y_1,y_2) = \binom{n}{y_1y_2(n-y_1-y_2)} p_1^{y_1} p_2^{y_2} \left(1-p_1-p_2\right)^{(n-y_1-y_2)}. \text{ Find the marginal pdf of } \ Y_1.$$

HOMEWORK #15-3

A lot of items contains 10% with exactly one defect, 5% with more than one defect, and the reminder with no defect. Ten item are randomly selected from the lot. If Y_1 denote the number of items with one defect, and Y_2 the number of items with one more that one defect. Suppose the repair cost are $Y_1 + 3Y_2$. Fine the mean and variance of the repair cost. Let Y be the number of items among ten that have at least one defect. Find P(Y = 2) and $P(Y \le 1)$

5.10 결합 적률생성함수 (Joint MGF)

Recall $M(t) = E(e^{tX})$: (일변량) 확률변수 Y의 MGF,

- •적률생성함수는 t의 함수이다.
- •적률을 구하는데 사용한다. $M^{(k)}(t=0) = E(X^k)$.
- •MGF의 유일성(uniqueness): 적률생성함수가 같은 확률변수는 동일한 분포함수를 갖는다. 이를 이용하여 확률변수 함수(function of random variable)가 어떤 분포를 갖는지얻게 된다.

정의(DEFINITION)

확률변수 X_1,X_2 의 결합 적률생성함수(joint MGF)는 $M_{X_1,X_2}(t_1,t_2)=E(e^{t_1X_1+t_2X_2})$ 이다. X_1,X_2 주변(marginal) MGF는 각각 $M_{X_1,X_2}(t_1,0),M_{X_1,X_2}(0,t_2)$ 로 정의한다.

THEOREM(1)

상수 a,b일 경우 Y=a+bX의 적률생성함수는 $M_Y(t)=M_{a+bX}(t)=e^{at}M_X(bt)$ 이다.

Proof

$$M_Y(t) = M_{a+bX}(t) = E(e^{t[a+bX]}) = e^{at}E(e^{(tb)X})$$

EXAMPLE 5.29

 $Z \sim Normal(0,1)$ 일 경우 $X = \mu + \sigma Z$ 는 어떤 분포를 따르는가?

THEOREM⁽²⁾

두 확률변수 X_1, X_2 일 경우 $M_{X_1, X_2}(t_1, t_2) = M_{X_1}(t_1) M_{X_2}(t_2)$ 이다.

Proof

$$M_{X_1,X_2}(t_1,t_2) = E(e^{t_1X_1+t_2X_2}) = E(e^{t_1X_1})E(e^{t_2X_2}) = M_{X_1}(t_1)M_{X_2}(t_2)$$

THEOREM[®]

확률표본 $X_1, X_2, ..., X_n$ ($\Leftrightarrow X_i \ iid \ f(x), M_X(t)$)에서 $U = \sum_{i=1}^n a_i X_i$ 의 적률생성함수는

$$M_U(t) = \prod_{i=1}^n M_X(a_i t).$$

HOMEWORK #15-4

Prove the above theorem 3.

EXAMPLE 5.30

결합확률밀도함수 $f(y_1, y_2) = e^{-y_1}, 0 \le y_2 \le y_1$ 이다.

$$(1)\,M_{Y_1,Y_2}(t_1,t_2) = \frac{1}{(1-t_1-t_2)(1-t_1)} 임을 보이서요.$$

(2)확률변수 Y_1, Y_2 의 주변 MGF 구하고 이를 이용하여 어떤 분포를 따르는지 밝히시오.

 $X_1, X_2, ..., X_n$ 는 $Normal(\mu, \sigma^2)$ 으로부터 확률표본일 경우.

- (1) $\sum_{i=1}^{n} X_i$ 는 어떤 분포함수를 따르는가?
- (2) $\overline{X} = \sum_{i=1}^{n} X_i / n$ 는 어떤 분포함수를 따르는가?

APPENDIX1

 $X \sim Exponential(\beta)$ 의 적률생성함수를 구하시오.

$$m(t) = E(e^{tX}) = \int_{0}^{\infty} e^{tx} \frac{1}{\beta} e^{-x/\beta} dx = \frac{1}{\beta} \int_{0}^{\infty} e^{-x(1-\beta t)/\beta} dx (Since\beta/(1-\beta t) > 0 \Rightarrow t < 1/\beta)$$

$$= \frac{(\frac{\beta}{1-\beta t})}{\beta} \int_{0}^{\infty} \frac{1}{(\frac{\beta}{1-\beta t})} e^{-x(1-\beta t)/\beta} dx = \frac{1}{1-\beta t}.$$

$$Q.E.D.$$

HOMEWORK #15-5

 $X_1, X_2, ..., X_n$ 은 $Exponential(\beta)$ 일 경우 $U = \sum_{i=1}^n X_i$ 는 어떤 분포를 따르는가?

APPENDIX2

Find the MGF of $X \sim Normal(\mu, \sigma^2)$.

우선 $(X - \mu)$ 의 적률생성함수를 구하자.

$$M_{X-\mu}(t) = \int_{-\infty}^{\infty} e^{t(x-u)} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} e^{ty} e^{-\frac{(y)^2}{2\sigma^2}} dy$$
$$= e^{t^2\sigma^2/2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y-\sigma^2t)^2}{2\sigma^2}} dy = e^{t^2\sigma^2/2}$$

$$M_{X-\mu}(t) = E(e^{t(X-\mu)}) = E(e^{tX})e^{-t\mu} = M_X(t)e^{-t\mu}$$
. $\Box \exists \Box \exists M_X(t) = \exp(\mu t + \frac{\sigma^2 t^2}{2})$ Q.E.D

 X_1, X_2 의 이변량 정규확률밀도함수는

$$P(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{z}{2(1-\rho^2)}\right],$$

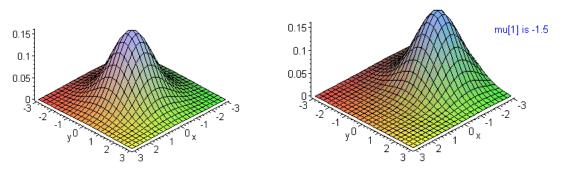
$$z \equiv \frac{(x_1 - \mu_1)^2}{\sigma_1^2} - \frac{2\rho(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}, \qquad \rho \equiv \text{cor}(x_1, x_2) = \frac{\sigma_{12}}{\sigma_1\sigma_2}$$

- (1) X_i 의 주변확률밀도함수는 $N(\mu_i, \sigma_i^2)$.
- $(2) \rho$ 는 상관계수이다.
- (3)Box-Muller Transformation: $Y_1, Y_2 \sim (iid)Uniform(0,1)$ 일 경우

$$X_1 = (-2\ln Y_1)^{1/2}\cos(2\pi Y_2)$$
은 이변량 정규분포를 따른다. $X_2 = (-2\ln Y_1)^{1/2}\sin(2\pi Y_2)$

Bivariate Normal

mu[1] is changing!



http://www2.kenyon.edu/People/hartlaub/MellonProject/Bivariate2.html