데이터 요약 개념

- * 모집단으로부터($X \sim f(x; \theta)$) 얻은 확률표본 (데이터)은 (x_1, x_2, \dots, x_n) 는 모집단의 분포 와 동일하다.
- * 모집단에서 궁금한 것은 확률분포함수*f*(*x*)와 모수(*θ*)이다.
- * 모수에 대한 정보는 확률표본, 데이터의로부터 계산될 수 있는데, f(x)는 그래프 graphical 요약 으로부터 모수에 대한 정보는 숫자 numerical 요약으로 얻는다.
- * 통계적 방법론에서 데이터 종류는 "숫자형, 정
 량변수", "분류, 범주형, 정성변수", 2개로 나뉘고,
 변수의 종류에 따라 요약방법이 정해진다.

정성적 변수 qualitative, categorical

정성(범주)형 변수(데이터)는 명목형, 순서형(순서가 있는 범주형)으로 세분화 되지만 통계적 분석 에서는 동일한 방법이 적용된다.

정성적 데이터는 가질 수 있는 값의 수준(범주 category)이 유한하므로 각 범주의 빈도 frequency 로 숫자로 표현하거나 그래프로 나타내면 된다.

- * 빈도 frequency : 데이터에서 동일한 범주 값이 반복된 개수
- * 상대빈도 relative frequence : 빈도를 데이터 크기로 나눈 값 => 비율 proportion (p, \hat{p})

1) 숫자 요약 = 빈도

- * 각 범주의 빈도, 상대빈도(비율 ratio)가 정리한다.
- * 빈도표, 상대빈도 (= 비율 = 확률분포함
 수) 표 정리한다.

PET Type	Count	Rel. Freq	1616h
Dog	16	.29	10/30
Cat	28		
Fish	8		
Other	4		
Totals	56		

* [예제 데이터] 소속팀의 선수 빈도표와 상대빈도를 구하시오. [엑셀 이용]

Atlanta 11	Baltimore 15
Cincinnati	Cleveland
12	12
Los Angeles	Milwaukee
14	14
Oakland	Philadelphia
12	12
Seattle	St Louis
12	11

Atlanta	Baltimore
0.03416149	0.04658385
Cincinnati	Cleveland
0.03726708	0.03726708
os Angeles	Milwaukee
0.04347826	0.04347826
Oakland	Philadelphia
0.03726708	0.03726708
Seattle	St Louis
0.03726708	0.03416149

2) 그래프 요약

빈도표(상대빈도표)를 막대 그래프나 파이(상 대빈도만 가능, 원 전체=100%) 차트로 나타 내면 된다.

(상대)빈도가 **가장 큰 범주를 최빈값 (mode)** 라 한다.

Chicago, New York 최빈값--->

정량적 변수 quantitative, numeric

크기를 가진 숫자 데이터이므로 데이터 관측값을 활용하여 1)모집단의 확률분포함수 형태를 알 수 있는 표본 확률분포함수(그래프 요약), 2)모수에 대한 정보를 알 수 있는 통계량을 구할 수 있다.

1) 그래프 요약

데이터 관측값을 BIN (계급 구간 class interval) 8~12개(Thumb's Rule) (Sturge's rule -

K = 1 + 3.322 * log₁₀(n))로 구성하여 막대 그래프로 나타낸 히스토그램 histogram이나, 5개 주요 통계량을 그래프에 나타낸 나무상자그림으로 요약한다.

- 표본 확률분포함수의 형태를 알 수 있다. f(x)
- 중앙 위치, 산포(데이터 흩어짐)에 대한 정보를 얻는다.

(1) 순서통계량 order statistic

데이터 관측값 (x_1, x_2, \ldots, x_n) 을 크기 순으로 정렬한 통계량 - $x_{(1)}, x_{(2)}, \ldots, x_{(n)}$

- 최대값 maximum value : 데이터 관측값 중 가장 큰 값, *x*_(n)
- 최소값 minimum value : 데이터 관측값 중 가장 작은 값, *x*(1)
- 범위 range : 최대값-최소값, $R = x_{(n)} x_{(1)}$
- 중위값 median : 데이터 관측값 중 크기 순서에서 가운데 있는 관측값, x_(MD), MD=중위값 위치, MD = (n + 1)/2, 만약 MD가 정수가 아닌 경우 (예: 11.5) 11번째 순서통계량과 12번째 순서통계량의 평균값을 중위값 - (x₍₁₁₎ + x₍₁₂₎) 2
- 사분위값 quartile : 데이터 크기 순 25%(일 first 사분위, x_(QD)), 50%(이사분위, 중위값),
 75%(삼사분위) 값, 사분위 위치 Quartile Depth, QD = MD_integer + 1 2 MD=11.5 인 경우 MD_integer=11임)
- 분위값 percentile : 데이터를 크기순으로 정렬 했을 때 백분위 위치에 있는 관측값, 상위 20% = 80% 분위, x_(0.8*n) 보간법 (예 : n=22이면, 0.8*22=17.6 위치, x₍₁₇₎와 x₍₁₈₎을 활용한 보간법으로 (0.4:0.6) 배분

(예제	데이터)	n=12											
	8	17	9	10	9	11	7	13	12	3	10	4	
(순서	통계량)												
	3	4	7	8	9	9	10	10	11	12	13	17	
(최대급	$x_{(12)}$	$) = 1^{2}$	7, (최소	값) x ₍₁) = 3	> 범역	위 rang	e = 최디	╏む−최-	소값=14			
(중위급	값) 중위	위치 /	MD =	= (12 -	+ 1)/2	2 = 6.	$.5, \frac{x_{(6)}}{$	$\frac{x_{(7)}}{2}$	$\frac{(1)}{2} = (2)$	9 + 10	0)/2 =	= 9.5	
(제일/	나분위깂	り 사분	위 위치	QD	= (M	D _i nte	ger +	- 1)/2	= 3.5	5			
	$x_{(3)}$ -	$+ x_{(4)}$	= (7)	+ 8)/	2 = 2	75				최소깂	t	3	
		2	-(/	10)/	2 - 1					최대깂	t	17	
		$x_{(9)}$	$+ x_{(1)}$	0)						중위깂	t	9.5	
(제삼/	나분위값	£) —	2	<u> </u>	(11 +	12)/2	2 = 1	1.5		제일시	·분위	7.75	
(0.00)					~					제3사·	분위	11.25	
(80%)	문위값) 문위역	위지=0.	8*12=9	.6 ->					80%분위		11.8	
$x_{(10)}$	$-x_{(9)}$	= 1 *	* 0.6 =	=			> mir	n(x);	nax(x);med	dian()	k);	
<i>x</i> ₍₉₎ ⊣	- 0.6 =	= 11.	6				[1] 3	3 L7					
* 위의	의 방법은	의 수작	언 밧번	으로 시	분위 빅	백분	[1] 9	9.5					
위,	통계소	_ ' ' 프트웨	니 아 아스	' !(아래 {	·느·// ··식)은	복	> qua	antil	e(x,0	.25);	quant	tile(x,0	.75)
· · · 장년	하고 전호	하는다	' ' <u>-</u> 위이 계	사격고	_	' 하	25% 7.75						
	11-0-		11-171	는 권취	1-100		75%	6					
							11.25	5					
	a . 1	054	•					antil	e(x,0	.8)			
	c_{ℓ} +	0.97	$\frac{i}{-} \times 1$.00%			80% 11 R						
	1	V				-	11.0						

N = 데이터 크기, c_l = 해당 분위 전 누적 빈도, f_i = 해당 분위 빈도

(2) 나무상자그림 box whisker plot

5개 주요 순서통계량 (최소, 1사분위, 중위, 3사분위, 최대) 그리고 이상치, 상자와 수염 크기로 나타 낸다.

• IQR 사분위 범위 Inter-Quratile Range : $IQR = Q_3 - Q_1$

• 이상치 outlier : $(Q_1 - 1.5 * IQR, Q_3 + 1.5 * IQR)$ 벗어난 관측치

· 극심 severe 이상치 : (Q₁ − 3 * IQR, Q₃ + 3 * IQR) 벗어난 관측치

4개의 구간에 데이터 개수가 1/4씩 분포되어 있음

- 좌우 대칭인 경우 상자 정확하게 이등분, 수염 길이 동일

(진단 내용) a) 확률분포함수 형태 - 모집단 확률분포함수 (치우침, 좌우 대칭) b) 이상치 진단

(단점) 봉우리 개수 알수 없음, 정확한 통계량 값 알수 없음

[이상치 해결] 오류 검증 후 제거 후 통계적 분석 방법 적용

는 경우 봉우리가 2개 나타나는 경우가 발생 - 상자 수염 그림으로는 판별 불가, 하여 정량적 데이터의 그래프 요약은 나무 상자 그림과 히스토그램 동시에 요약하는 것을 권한다. 옆의 히스토그램은 시험 공부 한 집단과 그렇지 않은 집단의 시험 성적 히스토그램 이다. -> 데이터 분리하여 분석

두 개의 서로 다른 집단 데이터의 히스토그램을 그리

Left-Skewed (Negative Skewness)

Mode

Median

Distribution of Blood Pressure

빈의 중앙 값을 연결하면 확률분포함수이다.

(진단 내용) a) 확률분포함수 형태 - 모집단

우침, 죄우대칭) b) 봉우리 (최빈값)

e) 각 구간의 범위에 속한 데이터 빈도를 구하고 빈도 크기를 막대로 표현하면 된다.

정량적 데이터의 바 그래프와 동일, 범주를 구간으로 설정

c) 구간 폭이 의미를 갖도록 가능하면 정수 단위로 조정한다. (예: 3~17, 최초 폭 2.8이므로 구간 폭은 최종 2 혹은 5로 결정)

d) 범위를 구간으로 나눈다. [2, 4), [4, 6), [6, 8), …, [16, 18) 혹은 [0, 5), [5, 10), [10, 15), [15, 20)

- a) 데이터를 크기 순으로 정렬한 후 최대값과 최소값을 구하고 범위 range을 구한다. (예제 데이 터 : 범위=14)
- b) 빈(bin 계급 class) 개수를 결정하고 범위를 빈 개수로 나누어 계급 구간 넓이(폭) interval width

을 결정한다. (예 : 빈 개수를 5개로 하는 경우 구간 폭은 14/5=2.8)

Systolic

Diastolic

300

(3) 히스토그램 histogram

2) 숫자 요약

(1) 중앙위치 center location measure

	크기 magnitude	순서 order
통계량	평균 mean	중위값 median
기호	$\mu, ar{x}$	MD
공식	$\mu = \frac{\sum_{i=1}^{N} X_i}{N}, \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$	$X_{(MD)}, x_{(MD)}$
장점	표본평균 샘플링 확률분포함수를 알 수 있 어(중심극한정리) 신뢰구간 및 가설검정 추론이 가능하다집단 평균 비교 가능	치우침의 영향이 적어 중앙 위 치 통계량으로 가장 적절
단점	좌우 대칭이 아닌 치우침 데이터는 중앙 위치의 왜곡이 있음	중위값 샘플링 확률분포함수 를 구하기 어려워 모수 추론이 불가능 - 비모수추론

* 데이터의 분포를 좌우 대칭(정규변환)으로 만든 후 평균을 이용하는 것이 가장 적절

(예제 데이터) n=12
8 17 9 10 9 11 7 13 12 3 10 4
표본 평균 :
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{8 + 17 + \ldots + 4}{12} = 9.42$$

중위값 (수작업 계산) : $\frac{x_{(6)} + x_{(7)}}{2} = (9 + 10)/2 = 9.5$ 엑셀 - MD=9.5 (동일)

(2) 산포 척도 spread measure

	크기 magnitude	순서 order
통계량	분산 variance 표준편차 standard deviation	범위 range, 사분위 범위 IQR
기호	σ^2, σ, s^2, s	R, IQR
공식	$\sigma^{2} = \frac{\sum_{i}^{N} (X_{i} - \mu)^{2}}{N}, s^{2} = \frac{\sum_{i}^{n} (x_{i} - \bar{x})^{2}}{n - 1}$	$R = X_{(n)} - X_{(1)'}$ $IQR = Q_3 - Q_1$
장점	표본분산 샘플링 확률분포함수를 알 수 있어 가설 검정 추론이 가능하다.	치우침의 영향이 적 어 산포 통계량으로 적절
단점	좌우 대칭이 아닌 치우침 데이터는 분산 크기가 왜 곡이 있음	모수 추론이 불가능 - 비모수추론

 $_*$ 평균의 크기가 다른 두 집단 분산의 비교 시 변동계수 CV 통계량 이용 : $CV = rac{s}{ar{x}}$ *100 (%)

* 표본 표준편차의 분모에 n 대신, (n-1) 사용한 이유는 가장 좋은 추정치(MVUE 최소분산불편추 정량)이기 때문임

(예제데이터) n=12

8 17 9 10 9 11 7 13 12 3 10 4 표본 분산 = 3.8

$$s^{2} = \frac{\sum_{i}^{n} (x_{i} - \bar{x})^{2}}{n - 1} = \frac{(8 - 9.42)^{2} + (17 - 9.42)^{2} + \dots + (9 - 9.42)^{2}}{11}$$

범위: R = 17 - 3 = 14

사분위범위 : IQR = 11.5 - 7.5 = 4, (엑셀) 엑셀 - IQR=11.25-7.75=3.5

변동계수 variance coefficient : $CV = \frac{s}{\bar{x}} = \frac{3.8}{9.42} \times 100 = 0.4036$

일변량 통계적 방법 요약

Variables	Numerical description	Graphical description	Parametric test	Non- parametric test
nominal	Frequencies (one-dimensional contingency table)	Bar plot Pie chart		Chi-square for a one-dimensional contingency table
scale	Descriptive statistics	Histogram Boxplot	Student's t for one variable	Sign test

nominal 명목, scale 측정, descriptive statistic : 기술 통계량

[예제 데이터] 선수들의 연봉(salary) 데이터 이용하여 다음을 구하시오. [엑셀 이용]

1) 나무상자그림, 히스토그램을 그리고 해석하시오.

2) 주요 통계량을 구하시오.

>	<pre>summary(as.numeric(ds\$Salary))</pre>								
	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.			
	1.00	12.25	63.50	64.17	108.75	150.00			

> sd(as.numeric(ds\$Salary))
[1] 49.20608

[엑셀]

데이터	검토 보기	○ 수행할 작업을	을 알려 주세요	2 ,					
					기술 통계법			?	\times
ջ 연결	귀 기 히	지우기			입력			===	
속성			[용		입력 범위([):	\$V\$1		왁	2
े तम चरा	통계 데이터 분석	1			데이터 반향·	(e) ପ୍ର(C)		취소	소
. 전설 편집						○ □(말)			
[결	분석 도구(<u>A</u>)					08(2)		도움말	발(<u>H</u>)
	분산 분석: 반복	없는 이원 배치법	^		□ 첫째 행 이름표 사용	<u></u> ₹(<u>L</u>)			
	상관 분석				* 러 O 네				
	공문산 문석				굴텩 곱선				
L	기술 동계법 지수 편합법				○ 출력 범위(<u>○</u>):				
	지수 평활립			"	● 새로운 워크시트(<u>P</u>)	:			
					○ 새로운 통합 문서(⊻	<u>V</u>)			
Microsoft Excel		×	V		이야토케란이				
			Salary		M 표박 운세용())				
기술 통계	법 - 입력 범위에 숫지	ト가 아닌 값이 있습니다.							
			475						
1	확인 도	.움말(H)	480						
			500	\	/ 열 젓 행(v1)에 /	는자가 아닌	! 변수명	이있	

고 결측치는 .으로 되어 있으므로 입력범위를 "\$V\$2:\$V\$323" 수정하고 . 을 찾기 바꾸기 메뉴(핫 키 : ctrl+H)를 이용하여 . 을 공백으로 바꾼 후 "기

숙톶계번" 화이 버트윽 누르며 식핵되다	기술 통계법			?	\times
	입력 입력 범위(<u>l</u>):	\$∨	\$2:\$V\$323 💽	확인	<u>1</u>
찾기 및 바꾸기			Q.(c)	취소	<u>></u>
찾기(<u>D</u>) 바꾸기(<u>P</u>)					
찾을 내용(<u>N</u>): · · 설정된 서식 없음	평	영균	535.97		
바꿀 내용(E):	Ŧ	표준 오차	27.82		
	ਣ	5앙값	425.00		
혐위(⊞): 시트 □ 데/오군자 구군(⊑)	초	티빈값	750.00		
검색(S): 행 └ 전자/바자 구분/B)	Ŧ	표준 편차	451.10		
찾는 위치(山): 수식 🗸	분	본산	203494.85		
	첟	험도	3.06		
모두 바꾸기(A) 바꾸기(R) 모두 찾기(I) 다음 찾기(E	외	ㅐ도	1.59		
	벋	범위	2392.00		
	초	티소값	68.00		
	초	티대값	2460.00		

합

관측수

140959.00

263.00

통계적 방법

통계 데이터 분석
분석 도구(<u>A</u>)
분산 분석: 일원 배치법 분산 분석: 반복 있는 이원 배치법 분산 분석: 반복 없는 이원 배치법 상관 분석 공분산 분석
기술 통계법 지수 평활법 F-검정: 분산에 대한 두 집단 푸리에 분석
히스토그램

히스토그램		?	×
입력		화이	
입력 범위([):	\$V\$2:\$V\$323		
계급 구간(<u>B</u>):	\$Z\$10:\$Z\$19	취소	<u>-</u>
□ 이름표(<u>L</u>)		도움말	(<u>H</u>)
술력 옵션			
○ 출력 범위(<u>Q</u>):			
● 새로운 워크시트(₽):			
○ 새로운 통합 문서(<u>₩</u>)			
🗌 파레토: 순차적 히스토	그램(<u>A</u>)		
□ 누적 백분율(<u>M</u>)			
☑ 차트 출력(<u>C</u>)			

^

나무 상자 그리기 : 엑셀 2016에서는 통계차트 삽입에 포함되어 있음

